Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification.

نویسندگان

  • Biao Jie
  • Daoqiang Zhang
  • Chong-Yaw Wee
  • Dinggang Shen
چکیده

Recently, brain connectivity networks have been used for classification of Alzheimer's disease and mild cognitive impairment (MCI) from normal controls (NC). In typical connectivity-networks-based classification approaches, local measures of connectivity networks are first extracted from each region-of-interest as network features, which are then concatenated into a vector for subsequent feature selection and classification. However, some useful structural information of network, especially global topological information, may be lost in this type of approaches. To address this issue, in this article, we propose a connectivity-networks-based classification framework to identify accurately the MCI patients from NC. The core of the proposed method involves the use of a new graph-kernel-based approach to measure directly the topological similarity between connectivity networks. We evaluate our method on functional connectivity networks of 12 MCI and 25 NC subjects. The experimental results show that our proposed method achieves a classification accuracy of 91.9%, a sensitivity of 100.0%, a balanced accuracy of 94.0%, and an area under receiver operating characteristic curve of 0.94, demonstrating a great potential in MCI classification, based on connectivity networks. Further connectivity analysis indicates that the connectivity of the selected brain regions is different between MCI patients and NC, that is, MCI patients show reduced functional connectivity compared with NC, in line with the findings reported in the existing studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Structural Feature Selection for Connectivity Network-Based MCI Diagnosis

Connectivity networks have been recently used for classification of neurodegenerative diseases, e.g., mild cognitive impairment (MCI). In typical connectivity network-based classification, features are often extracted from (multiple) connectivity networks and concatenated into a long vector for subsequent feature selection and classification. However, some useful network topological information...

متن کامل

Integrating Multiple Network Properties for MCI Identification

Recently, machine learning techniques have been actively applied to the identification of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). However, most of the existing methods focus on using only single network property, although combination of multiple network properties such as local connectivity and topological properties may be more powerful. Employing the kernel-based method,...

متن کامل

Small-World Brain Network and Dynamic Functional Distribution in Patients with Subcortical Vascular Cognitive Impairment

To investigate the topological properties of the functional connectivity and their relationships with cognition impairment in subcortical vascular cognitive impairment (SVCI) patients, resting-state fMRI and graph theory approaches were employed in 23 SVCI patients and 20 healthy controls. Functional connectivity between 90 brain regions was estimated using bivariate correlation analysis and th...

متن کامل

A Pilot Study on Brain Plasticity of Functional Connectivity Modulated by Cognitive Training in Mild Alzheimer’s Disease and Mild Cognitive Impairment

Alzheimer's disease (AD) alters the functional connectivity of the default mode network (DMN) but also the topological properties of the functional connectome. Cognitive training (CT) is a tool to slow down AD progression and is likely to impact on functional connectivity. In this pilot study, we aimed at investigating brain functional changes after a period of CT and active control (AC) in a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 35 7  شماره 

صفحات  -

تاریخ انتشار 2014